Graph-Based Semi-Supervised Learning and Spectral Kernel Design

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analysis of Spectral Kernel Design based Semi-supervised Learning

We consider a framework for semi-supervised learning using spectral decomposition based un-supervised kernel design. This approach subsumes a class of previously proposed semi-supervised learning methods on data graphs. We examine various theoretical properties of such methods. In particular, we derive a generalization performance bound, and obtain the optimal kernel design by minimizing the bo...

متن کامل

Hyperparameter and Kernel Learning for Graph Based Semi-Supervised Classification

There have been many graph-based approaches for semi-supervised classification. One problem is that of hyperparameter learning: performance depends greatly on the hyperparameters of the similarity graph, transformation of the graph Laplacian and the noise model. We present a Bayesian framework for learning hyperparameters for graph-based semisupervised classification. Given some labeled data, w...

متن کامل

Spectral Kernel Learning for Semi-Supervised Classification

Typical graph-theoretic approaches for semisupervised classification infer labels of unlabeled instances with the help of graph Laplacians. Founded on the spectral decomposition of the graph Laplacian, this paper learns a kernel matrix via minimizing the leave-one-out classification error on the labeled instances. To this end, an efficient algorithm is presented based on linear programming, res...

متن کامل

Scalable Semi-supervised Learning with Graph-based Kernel Machine

Acquiring labels are often costly, whereas unlabeled data are usually easy to obtain in modern machine learning applications. Semi-supervised learning provides a principled machine learning framework to address such situations, and has been applied successfully in many real-word applications and industries. Nonetheless, most of existing semisupervised learning methods encounter two serious limi...

متن کامل

Semi-supervised Learning with Spectral Graph Wavelets

We consider the transductive learning problem when the labels belong to a continuous space. Through the use of spectral graph wavelets, we explore the benefits of multiresolution analysis on a graph constructed from the labeled and unlabeled data. The spectral graph wavelets behave like discrete multiscale differential operators on graphs, and thus can sparsely approximate piecewise smooth sign...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Transactions on Information Theory

سال: 2008

ISSN: 0018-9448

DOI: 10.1109/tit.2007.911294